Applied and Environmental Microbioloay

- 1 Enterococci Concentrations in a Coastal Ecosystem are a Function of Fecal Source Input,
- 2 Environmental Conditions, and Environmental Sources
- 3
- 4 Derek Rothenheber^a and Stephen Jones^{ab#}
- 5
- 6 University of New Hampshire, Molecular and Cellular Biomedical Sciences, Durham, New
- 7 Hampshire, USA^a, University of New Hampshire, Department of Natural Resources, Durham,
- 8 New Hampshire, USA^b
- 9
- 10 Running Head: Fecal Source Influence on Enterococci Concentrations
- 11 Key Words: fecal pollution, coastal ecosystem, enterococci, microbial source tracking
- 12
- 13

14

- - 15
 - 16
 - 17
 - 18
 - 19 #Address correspondence to Steve Jones, Stephen.jones@unh.edu

21 Fecal pollution at coastal beaches requires management efforts to address public health and economic concerns. Fecal-borne bacterial concentrations are influenced by different fecal 22 23 sources, environmental conditions, and ecosystem reservoirs, making their public health significance convoluted. In this study, we sought to delineate the influences of these factors on 24 25 enterococci concentrations in southern Maine coastal recreational waters. Weekly water samples and water quality measurements were conducted at freshwater, estuarine, and marine beach sites 26 27 from June through September 2016. Samples were analyzed for total and particle-associated 28 enterococci concentrations, total suspended solids, and microbial source tracking markers (PCR: Bac32, HF183, CF128, DF475, Gull2; qPCR: AllBac, HF183, GFD). Water, soil, sediment, and 29 marine sediment samples were also subjected to 16S rRNA sequencing and SourceTracker 30 analysis to determine the influence from these environmental reservoirs on water sample 31 microbial communities. Enterococci and particle-associated enterococci concentrations were 32 33 elevated in freshwater, but suspended solids concentrations were relatively similar. Mammal 34 fecal contamination was significantly elevated in the estuary, with human and bird fecal 35 contaminant levels similar between sites. A partial least squares regression model indicated particle-associated enterococci and mammal marker concentrations had the most significant 36 positive relationships with enterococci concentrations across marine, estuary, and freshwater 37 environments. Freshwater microbial communities were significantly influenced by underlying 38 sediment while estuarine/marine beach communities were influenced by freshwater, high tide 39 40 height, and estuarine sediment. Elevated enterococci levels were reflective of a combination of increased fecal source input, environmental sources, and environmental conditions, highlighting 41 the need for encompassing MST approaches for managing water quality issues. 42

Accepted Manuscript Posted Online

43 IMPORTANCE

44 Enterococci have long been the federal standard in determining water quality at estuarine and marine environments. Although enterococci are highly abundant in the intestines of many 45 animals they are not exclusive to that environment and can persist and grow outside of fecal 46 tracts. This presents a management problem for areas that are largely impaired by non-point 47 source contamination, as fecal sources might not be the root cause of contamination. This study 48 employed different microbial source tracking methods to delineate influences from fecal source 49 50 input, environmental sources, and environmental conditions to determine which combination of variables are influencing enterococci concentrations in recreational waters at a historically 51 impaired coastal town. Results showed that fecal source input, environmental sources and 52 conditions all play a role in influencing enterococci concentrations. This highlights the need to 53 include an encompassing microbial source tracking approach to assess the effects of all 54 important variables on enterococci concentrations. 55

56

57 INTRODUCTION

Fecal contamination of coastal recreational waters is a significant public health concern, as fecal material, often from nonpoint sources, can harbor an array of different pathogens. The US EPA has established regulations based on enterococci bacteria as the indicator of fecal-borne pollution to help manage water quality at estuarine and marine beaches (1). These organisms correlated well with predicted public health outcomes in several epidemiological studies that served as the basis for their adoption as the regulatory water quality indicator (2–5). The presence of human feces can present an elevated public health risk in recreational waters compared to non-human

Applied and Environ<u>mental</u>

Downloaded from http://aem.asm.org/ on July 18, 2018 by guest

65 sources due to the lack of an "inter-species barrier" for diseases and the higher density of human pathogens that humans can carry (6-8). Although human pollution represents the greatest public 66 health risk, other fecal sources that contain enterococci and possibly human pathogens can be 67 chronic or intermittent sources of both, making beach water quality management and 68 remediation efforts more complex. 69

70

The need to differentiate fecal sources in recreational waters led to the emergence of microbial 71 source tracking (MST) methods in the early 2000s, most notably the PCR-based assays that 72 target the 16S rRNA gene in Bacteroides spp. (9, 10). There are a wide range of species-specific 73 74 genetic markers designed to identify human fecal sources and various domestic and wildlife fecal sources. These assays have been in use for well over a decade and are supported by numerous 75 and rigorous laboratory evaluations and field applications (11-17). Initial field studies 76 77 investigated the relationship between MST markers and FIB concentrations in recreational 78 waters to better elucidate potential sources of fecal pollution. Some studies have found strong relationships between the MST markers and enterococci (12, 18) while other studies have found 79 80 either weak or no relationships (19-21), many of which are discussed in a review by Harwood et al. (22). One main factor affecting the relationship between enterococci and the relative strength 81 82 of different sources of fecal contamination is that enterococci can persist and grow in the environment, which can significantly influence their concentrations in recreational water (23). 83

84

85 Due to the pervasiveness of enterococci in natural ecosystems, recent studies have been

conducted to not only elucidate environmental parameters controlling their growth, but also to 86

87	identify naturalized niches that can act as reservoirs for enterococci and the associated influence
88	on water quality measurements. Specifically, enterococci have been shown to persist in fresh
89	water sediments (24-26) and marine sediments (24, 27), and in some cases their relative
90	concentrations in sediments are several orders of magnitude higher than the overlying water (24,
91	28-30). In addition, enterococci persist in soils affected by anthropogenic activities (31) as well
92	as more natural soil environments (32-34). Thus, soil can act as a significant reservoir of
93	enterococci that can, if eroded, confound concentrations observed in recreational waters.
94	Evaluating the influence of sediment and or soil on water quality has, in some studies, been
95	conducted by measuring total suspended solids as a surrogate for sediment-associated
96	enterococci (27, 35, 36), however this non-specific approach does not indicate the specific type
97	of source(s) of the suspended solids. With the advent of next generation sequencing, sources of
98	sediment or soil bacteria can be fingerprinted via 16S rRNA sequencing, and programs like
99	SourceTracker can then determine relative fractions of source-specific 16S fingerprints within a
100	water sample (37).

101

This study examined the coastal and estuarine beaches of Wells, ME where there has been
historically elevated enterococci levels, as reported by the Maine Healthy Beaches Program (38).
Prior to this study, only a ribotyping-based MST study (39) that also involved other indicator
tracking work had been conducted in this area. In that study, the two major freshwater inputs,
the Webhannet River and Depot Brook were found to be the major influences on water quality
related to an array of fecal contamination sources. To investigate potential sources of enterococci
we measured three major categories of variables (fecal source input, environmental conditions,

Applied and Environmental

and environmental sources) and then used a partial least squares regression model approach to

determine the most significant influences on the enterococci concentrations in water samples.

111

112 **RESULTS**

113 Total and particle-associated enterococci concentrations and total suspended solids in water. During this study, total enterococci concentrations were highest in freshwater sites, with 114 115 concentrations significantly decreasing from there to the estuary and then the marine beach areas 116 (Figure 2). The geometric mean enterococci concentrations were 197 and 40 CFU/100 ml at the 117 Depot and Webhannet sites, respectively, with 71% of samples exceeding 104 CFU/100 ml at the 118 Depot site compared to 21% at the Webhannet site. In contrast, the geometric mean enterococci 119 concentrations at the other sites were all <15 CFU/100 ml and samples exceeded 104 CFU/100 ml 0% (at Wells Beach) to 25% of the time. In addition to measuring enterococci concentrations 120 121 in water samples, particle-associated enterococci and suspended solid concentrations were 122 measured to better understand the potential mode of transport of these bacteria within this coastal 123 watershed. Throughout the study period (June-September 2016), levels of total and particleassociated enterococci varied by site. Concentrations were lowest at the marine beach (Wells 124 125 Beach) compared to other sites, with levels significantly higher in all estuary sites (W11-W15) 126 and freshwater sites (Depot & Webhannet; Figure 2).

127

Both total and particle-associated enterococci geometric mean concentrations were statistically
similar at the estuary beach (W11, W12, W13) and estuary (W14, W15) sites. Freshwater sites
(Webhannet and Depot) however, had statistically higher enterococci concentrations than other

Applied and Environmental

Microbiology

sites (Figure 2; $p < 0.05$). The ratio of total to particle-associated enterococci varied throughout
the season, with an average of 36.3% (SD \pm 30) across all sites. Sites within the estuary beach
showed the highest ratio (41%, SD \pm 32), however there were no significant differences observed
between sites or types of sites. Average TSS concentrations were relatively low and similar for
most sites, with an overall average of 2.9 mg TSS/L (SD \pm 1.2). The Webhannet freshwater site,
however, had a significantly lower average TSS concentration (1.2 mg/L \pm 1.0SD, p < 0.05)
(Figure 2), despite, as previously mentioned, having higher enterococci concentrations. The
relationship between particle-associated enterococci and TSS was not significant ($r^2 = 0.0011$),
and significant rainfall events were seldom and sparse with only one greater than 1 in 48 h prior
to sampling. Overall, this study showed enterococci concentrations were significantly different
by site and were ubiquitously associated with particles, which was independent of suspended

140 to sampling. Overall, this stu owed enterococci concentrations were significantly different by site and were ubiquitously ciated with particles, which was independent of suspended 141 142 solids concentrations.

143

131

132

133

134

135

136

137

138

139

Presence of fecal sources in fresh, estuarine, and marine waters. The concentration of fecal 144 pollution in this study area was determined using both PCR and quantitative PCR MST assays to 145 146 identify and quantify predominant sources of fecal contamination present in the water. The mammal fecal marker (Bac32) was detected via PCR at all sites 100% of the time throughout the 147 148 study period. (Supplementary Material 1E). The human fecal marker (HF183) was detected in 149 51% of all water samples, with the highest detection rate in fresh water (56%) and the lowest detection rate in marine beach water (46%). Differences in the percent detection of the gull fecal 150 marker (Gull2) were most pronounced between freshwater (10%) and all other sites (>77%). The 151 152 dog fecal marker (DF475) detection rate was highest in the estuary beach water (10/44 = 23%), 153 however 8 of the 10 positive samples were detected in July (8/13 = 61%). For all other sites, an

154 increase in the detection of dog fecal marker also occurred during July, with 44% (16/36) 155 detection, compared to 0% for August and September and <1% for June. Thus, most of the dog contamination at all sites was associated with unknown dog-related conditions during July.

157

156

Concentrations of mammal, human, and bird fecal sources. We used qPCR to provide 158 159 relative quantitative measures of mammal, human and bird fecal contamination levels. Water at 160 estuary and estuary beach sites contained significantly higher levels of mammal (AllBac) fecal marker copies, with an average of 1.54×10^7 compared to 2.62×10^6 in freshwater and 3.9×10^6 161 copies/100 ml in marine beach (p < 0.05). Average concentrations of human (HF183) and bird 162 163 (GFD) fecal markers were not statistically different between sites, however, concentrations of the 164 human marker in individual samples varied from <LOD - 2.04 x 10⁴ copies/100 ml (Figure 3), while bird fecal marker concentrations were relatively stable across all sites. No significant 165 166 temporal trends were observed for any of the quantitative fecal marker levels. Compared with 167 presence/absence detection of fecal sources, quantitative measurements also did not show strong spatial patterns, except mammal marker levels showed significant increases at estuary and 168 169 estuary beach sites compared to marine and freshwater sites.

170

Differences between water, soil, and sediment bacterial community compositions. 16S 171

172 amplicon sequencing was used to characterize the microbial community present in water and 173 other sample matrices (soil, sediment, and marine sediment), which was the nexus for ensuing 174 SourceTracker analysis. A total of 3,276,196 reads and 7,706 unique OTUs were obtained from 175 the 177 samples of fresh, estuary, estuary beach and marine beach water and soil, sediment, and

ental	
and Environmento	уgу
Envi	robiology
and	Micro
lled	

176	marine sediment. The number of OTUs assigned and the Shannon diversity index were
177	significantly higher for soil, sediment, and marine sediment when compared to water samples
178	(Figure 4, $p < 0.05$). Most taxa in the estuary and marine beach water samples were identified as
179	Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria classes, which together
180	accounted for 84% of the total assigned taxa. Cyanobacteria accounted for 34% of the taxa in
181	marine sediment, and Betaproteobacteria was one of the top three most abundant taxa in fresh
182	water, soil and sediment (Figure 4). A Non-Metric Multi-Dimensional Scaling (NMDS)
183	ordination was used to determine if the bacterial communities from water and other matrices
184	(soil and sediments) differed based on their taxonomic composition. Bacterial communities from
185	the marine beach and estuary (All Estuary) waters were similar, but were statistically different
186	from fresh water (Figure 5, $p < 0.05$). The bacterial communities associated with soil, sediment
187	and marine sediment were all distinct when compared to each other and water samples,
188	indicating unique groups of OTUs (Figure 5, $p < 0.05$). Samples taken from different areas
189	within the watershed (soil, estuarine water, freshwater, etc.) contained unique bacterial
190	compositions, allowing for downstream analysis with the SourceTracker software to discern
191	relative contributions of these different communities to the make-up of microbial communities in
192	the different types of water samples.
103	

193

Environmental source contribution to water samples. The fraction of freshwater, sediment,
soil, estuarine sediment, and marine beach water source bacterial communities within estuary
and estuary beaches water samples were calculated using the Bayesian mixing model
SourceTracker. Freshwater sample analysis showed a high probability of taxa originating from
underlying sediment (74%) and much lower probability of taxa originating from soil (2.6%).

199	Initial results for the estuary and estuary beach indicated that marine beach water was the
200	dominant source of bacteria (Table 1). However, given that likely fecal sources are coming from
201	the watershed, we excluded marine beach water as a potential source and included it as a sink
202	then re-analyzed the data. These second results showed that freshwater taxa had a high
203	probability of being a significant fraction of estuary (73%), estuary beach (66%) and marine
204	beach (35%) water communities, with a significantly higher percentage for the estuary locations
205	compared to the marine beach (Table 1, $p < 0.05$), which is more influenced by ocean microbial
206	taxa. Despite the significant percentage of freshwater taxa assignments in the estuary, estuary
207	beach, and marine beach waters there were no freshwater sediment or soil taxa assignments for
208	these sites. The data for the percent of unidentifiable taxa showed the opposite trend compared
209	to percent of assigned freshwater taxa. Unidentifiable taxa in the marine beach were significantly
210	higher (46%; $p < 0.05$), which is not surprising given that marine beach water community would
211	likely be most influenced by non-terrestrial sources. Estuarine sediment was the highest likely
212	identified source in the water from the marine beach site (19%), and it was significantly higher
213	than percentages calculated for all estuary sites (p < 0.05). Overall results showed that freshwater
214	source-related taxa were a pervasive source throughout the estuary and marine beach, and while
215	sediment source-related taxa were highly abundant in the freshwater they were not observed
216	within the estuary or marine beach.

217

218 Relationships between environmental conditions, fecal source concentrations,

environmental sources and enterococci concentrations. Two PLSR models were created to
determine relationships between enterococci and fecal source concentrations, environmental
sources, and environmental conditions (outlined in the Methods). The first 'freshwater' PLSR

222	model indicated particle-associated enterococci concentration, concentration of mammal fecal
223	marker, TSS concentration, percent of sediment source, percent of unknown source, and salinity
224	were important variables (VIP > 0.8) in resolving variation in enterococci concentrations (Table
225	1). A one-factor (single PLSR regression) model was deemed optimal (root mean PRESS =
226	0.735), and showed that all variables (except salinity) had positive associations with enterococci
227	concentrations. Values for model performance ($R^2Y = 0.6$, $R^2X = 0.5$, and $Q^2 = 0.4$) indicated
228	that the model fit the data moderately well ($R^2 X \ge 0.5$) but had poor predictive capability of
229	enterococci concentrations ($Q^2 < 0.5$; Supplementary Material 3). Out of all the important
230	variables, particle-associated enterococci (Particle ENT) concentrations showed the strongest
231	relationship to total enterococci concentrations (Table 2). The second PLSR model, a two-
232	factor/two PLSR regressions model, was the best fit (root mean PRESS = 0.744) from the PLSR
233	constructed for the estuary, estuary beach, and marine beach sites. The analysis identified
234	particle-associated enterococci concentration, mammal fecal source concentration, percent of
235	freshwater, unidentified and estuarine sediment sources, water temperature, and high tide height
236	as significantly related to enterococci concentrations. Factor one showed that all variables were
237	positively associated, except for the percent unidentified and marine sediment sources. The
238	second factor showed mammal fecal sources, freshwater sources, and water temperatures were
239	negatively related to enterococci concentrations, which was the opposite of their associations for
240	factor one. The high tide height and marine sediment were positively related to enterococci
241	concentrations for factor 2 of the PLSR (Table 2). Together both factors explained 61.8% in the
242	variation observed in enterococci concentrations, and model performance ($R^2Y = 0.6$, $R^2X = 0.5$,
243	and $Q^2 = 0.6$) indicated better predictive ability with a similar fit to the data compared to the
244	freshwater model (Supplementary Table 3). Out of all the potential variables measured (19 total)

Applied and Environmental Microbiology

AEM

245	across three categories (fecal source input, environmental source contribution, and environmental
246	conditions), particle-associated enterococci and mammal fecal marker concentrations had the
247	most significant relationships to enterococci concentrations. The relationships between other
248	variables and enterococci concentrations were specific to freshwater and estuary/marine beach
249	models, indicating ecosystem specific relationships. However, the joint relationship of particle-
250	associated and mammal fecal marker across freshwater and estuary/marine environments
251	indicate their overarching importance in determining enterococci concentrations.

252

4 Discussion: 253

254	Geometric mean enterococci concentrations at the marine beach, estuary, and estuary beach
255	sampling sites were all less than the State of Maine water quality standard of 35 CFU/100 ml and
256	the majority of single sample concentrations were less than the State 104 CFU/100 ml single
257	sample maximum standard, indicating the water quality was typically considered acceptable for
258	recreational use. Previous monitoring by the Maine Healthy Beaches Program in 2014 had
259	shown the Wells Beach area was one of 7 beaches in Maine that had a greater than 20%
260	exceedance rate, with suspicion that freshwater inputs are a significant source of contamination
261	(38). Our findings confirmed that enterococci concentrations were statistically higher at both
262	major freshwater tributaries to the estuary, especially at the Depot Brook site where levels were
263	regularly above the 104 CFU/100 ml single sample standard. The Depot Brook site is located in
264	a watershed with a higher fraction of developed land (0.27-0.50) and more people per km^2 (325-
265	2,650 people) compared to the Webhannet site watershed that has a lower developed fraction
266	(0.13-0.25) and 150-325 people per km ² ; 40). This could help explain the difference in
267	enterococci concentrations between freshwater sites as a more urbanized watershed can increase

0		
Accep	272	marine beach. This suggests that more typical rainfall conditions would probably have resulted in
Ā	273	more freshwater discharge and higher enterococci concentrations than what we observed.
	274	
	275	Enterococci were significantly associated with suspended particles of >3.0 μ m diameter (R ² =
Applied and Linni onniema Microbiology	276	0.96, p < 0.05). On average, 36% (SD \pm 30) of the total enterococci concentrations were
	277	associated with particles, which suggests particles as a potentially important transport
	278	mechanism. Other studies conducted in estuary and storm waters have found similar fractions of
	279	particle associated enterococci, but they noted enterococci demonstrated a preference for a larger
	280	particle size of >30 μ m (42–44). The large standard deviation for particle-associated enterococci
	281	could be attributed to the complex nature of particle interactions (sedimentation rate,
	282	electrostatic, hydrophobic, and other surface-surface interactions) and hydrogeological dynamics
	283	(salinity-driven turbidity maximum) (45). The mechanisms underlying enterococci-particle
	284	interactions may also be related to ionic strength in surface waters, as Enterococcus faecalis is

268

269

270

271

277	associated with particles, which suggests particles as a potentially important transport
278	mechanism. Other studies conducted in estuary and storm waters have found similar fractions of
279	particle associated enterococci, but they noted enterococci demonstrated a preference for a larger
280	particle size of >30 μ m (42–44). The large standard deviation for particle-associated enterococci
281	could be attributed to the complex nature of particle interactions (sedimentation rate,
282	electrostatic, hydrophobic, and other surface-surface interactions) and hydrogeological dynamics
283	(salinity-driven turbidity maximum) (45). The mechanisms underlying enterococci-particle
284	interactions may also be related to ionic strength in surface waters, as Enterococcus faecalis is
285	negatively charged over a broad pH range (2-8 pH units) and in the presence of different ion
286	concentrations (46). Results for this study indicate that TSS and particle-associated enterococci

transport of more pollution from the watershed to the freshwater tributary. However, the summer

of 2016 was especially dry in this region (41) with just one event with >1 inch of rain (1.73 in.,

6/28/16) 48 h prior to the sampling time. This overall dry condition likely contributed to less

fecal contamination transport (via freshwater discharge) from the watershed to the estuary and

287 had no linear relationship, indicating particle-associated enterococci were not dependent on the

288 total amount of suspended material and thus the association is likely due to other factors

289 influencing cell-particle interactions.

290

291	Quantitative PCR assessment of several fecal sources is a potentially useful strategy to determine
292	the relative significance of the different sources in a single sample and over time at sites of
293	interest. PCR detection showed a chronic presence of mammalian fecal source(s) (100% of
294	samples) with human fecal source(s) detected in approximately half of all samples, so qPCR
295	analysis is useful for bringing context to the significance of these findings. For example, Mayer
296	et al. (47) showed that wastewater effluent contains about 10^8 copies/100 ml of the AllBac
297	mammal fecal marker, Sowah et al. (48) found that streams impacted by septic systems could
298	contain $10^5 - 10^7$ copies/100 ml depending on the season, and Bushon et al. (49) determined that
299	under storm flow conditions in an urban watershed mammal marker copy numbers could exceed
300	10^8 copies/100 ml. Results for this study ranged from 10^5 to 8.6 x 10^7 copies/100 ml, values that
301	are within previously reported ranges and likely a concentration reflective of a predominantly
302	non-urbanized watershed and intermediate mammal source loading. The estuary and estuary
303	beach area showed a statistically higher concentration of the mammal marker, however, there
304	was no responsive increase in the concentrations of the human associated fecal marker (HF183),
305	which may indicate that humans are not the primary mammalian source for the increased fecal
306	contamination.

307

The average concentration of the human marker was 1,500 copies/100 ml across all sites (geometric mean 167 copies/100 ml), with the highest concentration being 20,364 copies/100ml (Webhannet 6/22/16). Boehm et al. (50) showed that 4,200 copies/100 ml of HF183 in recreational waters contaminated by raw sewage is the cutoff for where GI illnesses exceed the EPA acceptable risk level of approximately 30/1000 for swimmers (1) Another recent study also established a copy number cutoff for the HF183 assay using a threshold of 36 predicted GI

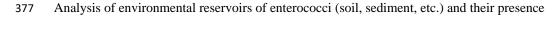
314	illness per 1000 swimmers as a benchmark. Their findings show at 3,220 copies/100 ml in
315	untreated sewage and at 3,660 copies/100 ml of HF183 in secondary treated sewage predicted GI
316	illness exceeds the 36/1000 swimmers threshold (51). It is important to note that both studies
317	simulated risk based on either raw sewage or secondary treated sewage contamination and do not
318	account for differential decay between pathogens and molecular markers. In our study, the
319	primary source of contamination seems to not be sewage, thus direct application of these
320	thresholds to our study might not convey the same risk. However, we chose to compare our
321	HF183 copy numbers to the threshold published by Boehm et al. (50) due to their use of the EPA
322	acceptable risk level of 30/1000 threshold and to give a general context for potential health risk
323	for this study. On average, sites in this study did not exceed this benchmark level, however, there
324	were 10 occasions when sites were above the 4,200/100ml threshold (7 different sites across 4
325	sampling dates), indicating that sporadic events or conditions can cause elevated human fecal
326	contamination and potential public health concerns (Supplementary 4). Boehm et al. also showed
327	that at the LOQ for most assays, 500 copies/100ml or 1000 copies/100ml, there is still a
328	predicted GI illness of 4 or 8 cases per 1000 swimmers, suggesting positive detection at the LOQ
329	is indicative of low level health risk (50). For this study, the LOQ was 250 copies/100ml for the
330	HF183 assay and 67 of 117 samples (57%) tested positive at or above this limit, suggesting that
331	over half of collected water samples indicated the presence of a low-level health risk. Although
332	there were no statistical differences between sites for human fecal contamination, W11 did
333	contain the highest geometric mean (493 copies/100 ml; Supplementary 4). This could be
334	reflective of the location of the site as it's where drainage from the Webhannet and Depot
335	watershed meets and is also directly downstream from a boat marina with the harbor sewage
336	pump station, which could be a possible point source of contamination. Nonetheless, even

AEM

337 though sites on average were below published thresholds, detection of human contamination 338 even at low concentrations is a concern.

339

340 Although human fecal sources are the greatest public health concern (6, 7, 22, 52) we did not 341 observe any relationship between human fecal contamination and enterococci concentrations. 342 We did however observe a positive relationship between mammal fecal contamination and enterococci concentrations through PLSR analysis, thus suggesting other mammalian fecal 343 344 source(s) are more influential in explaining the variation observed in this study. It is important to note that the mammal marker is at a higher copy number in sewage/feces compared to the human 345 346 marker making it by default easier to detect. Also, the mammal and human molecular markers 347 could decay at different rates in the environment thus masking any potential relationship between human fecal contamination and enterococci concentrations. Interestingly gull fecal sources were 348 349 detected in 77% or more of the samples in the estuary and marine beach area, however only 10% 350 of the samples were positive within the fresh water (Supplementary Material 1), despite there being no decrease in the bird fecal marker concentration, suggesting the presence of different 351 352 bird sources in these areas. Anecdotally, Canada geese were observed upstream of both the 353 Webhannet and Depot freshwater sites periodically throughout the season, which could be a 354 significant source of bird fecal contamination in the fresh water locations (53).


Downloaded from http://aem.asm.org/ on July 18, 2018 by guest

355

One of the unique findings of this study was the relative contribution of different sources to the 356 357 bacterial community in the estuarine water. The bacterial community in estuarine water primarily 358 originated (>90%) from marine beach water, which is not surprising for a well-flushed estuary

359	like the study site. Because the study period was minimally influenced by rainfall and associated
360	runoff of freshwater, we expected that the influence of freshwater sources would be low. In
361	ensuing analyses, we chose not to include marine beach water as a potential source for a variety
362	of reasons. First, the samples were always collected during low tide before the ebb when the
363	estuary water was draining and water was moving from the watershed towards the marine beach.
364	Secondly, we had already shown that the OTU compositions for the marine beach and estuary
365	samples were very similar, increasing the possibility of a type I error (false positive) for
366	identifying marine beach as the likely source of enterococci. Lastly, fecal pollution sources most
367	likely come from the watersheds and not from marine water, so excluding marine beach water
368	helps to enhance the determination of watershed influences. Our second analysis (marine beach
369	source excluded) showed that freshwater was a significant source of bacteria to the estuary
370	(>65% assignment) compared to soil, sediment, and estuarine sediment. This implicates
371	freshwater as a major conduit for bacterial transport, as well as the major source of enterococci
372	to the estuary. Overall this finding highlights the importance of freshwater discharge as a
373	controlling factor in transporting contamination from the watershed to the coast. The specific
374	percent assignment of freshwater source could be an over-estimate, however the trend observed
375	is a likely scenario given the rational discussed.
376	

376

378 within water samples using SourceTracker revealed a variety of source contributions to

379 freshwater, estuary and marine waters. To date there have been limited studies using

380 SourceTracker to identify soil and sediment-associated taxa within water samples, and none of

these studies have focused on a coastal watershed with the potential for freshwater, estuarine and

382	marine sources. One study conducted in the upper Mississippi River identified up to 14% of
383	sediment and 1.4% of soil sources of the taxa within the river water (54). This study, however
384	showed that the sediment source was much more abundant in freshwater (74%), indicating a
385	greater degree of mixing between the freshwater and underlying sediment communities. The
386	amount of sediment and soil sources within water samples may be related to site specific
387	characteristics such as relief or soil texture, which has been shown with TSS fluxes on a global
388	scale (55). Thus, the degree to which the underlying sediment community mixes with the
389	overlaying water is likely site specific. Interestingly, even though freshwater contained a
390	significant amount of sediment source taxa, no sediment source was observed at the estuary and
391	marine beach sites through the SourceTracker analysis. This difference could indicate that rapid
392	sedimentation happens during transit to and within the estuary and at the estuarine turbidity
393	maximum zone (56). TSS concentrations and the ratio of particle-associated to total enterococci
394	concentrations, however, showed no differences between freshwater and estuary/marine sites.
395	This could be related to the separate and quite different hydrodynamics within these different
396	water systems. The percent of sediment source in the freshwater samples observed here might
397	also be an over-estimate/over fit from SourceTracker given the limited number of potential
398	sources used, but results consistently showed an elevated presence of sediment in all freshwater
399	samples in this study. SourceTracker analysis also revealed that the freshwater source was
400	significant (35% or more) in estuary and marine beach water samples, suggesting that fresh
401	water is a significant conduit for microbial, and fecal contamination, transport from the
402	watershed to the estuary and marine beach.

403

404	The use of predictive models for water quality has been a focus in the field in parallel with the
405	adoption of bacterial indicator organisms as the gold standard for water quality determination.
406	The goal of this research was to identify significant influences on enterococci concentrations by
407	measuring a wide variety of variables. To distill this information, we used a PSLR model, which
408	has been shown to out-perform similar multiple linear regression and principle components
409	regression analyses (57) and has gained popularity in the water quality field (58, 59). Results
410	from the PLSR analysis in this study showed that particle-associated enterococci and
411	concentrations of mammal fecal sources were the driving force behind variation in enterococci
412	concentrations, as described by both PLSR models constructed. Other factors were found to
413	influence enterococci concentrations, however, these differed between the freshwater and
414	estuary/marine beach models. For example, TSS concentration as well as the percent of both
415	freshwater sediment and unknown sources positively influenced enterococci concentrations at
416	freshwater sites. This indicates that sediment is a likely source of enterococci that influences
417	concentrations measured in the water. Positive influences from the unidentified source taxa
418	suggests that there is either an alternative source (not measured in this study) within the
419	watershed that also influences enterococci concentrations or that SourceTracker could simply not
420	resolve all the potential sources we used. This finding is not surprising given the vast number of
421	potential sources of fecal pollution within a watershed and that fecal sources were not a part of
422	the SourceTracker analysis. Results from the estuary and marine beach model returned a two-
423	factor regression, with each factor essentially being the inverse of each other. Specifically, it
424	highlighted freshwater being a major conduit for microbial transport to and through the estuary.
425	Negative influences from the unknown source reaffirms this finding, along with positive
426	influences from the previous high tide height. The second factor explained approximately 15% of

427 the variation in enterococci concentration, therefore its importance must be weighed 428 proportionately to factor one, which explained almost 50% of the variation. However, positive 429 loadings from previous high tide height and percent of estuarine sediment indicate estuarine 430 sediment could be a source of enterococci whose influence is dependent on tide height. The negative loadings from mammal fecal source(s) may indicate that enterococci originating from 431 432 the estuarine sediment are not from mammal fecal sources.

433

434	Overall, the results from this study demonstrated that concentrations of enterococci in the coastal
435	estuarine/marine beach study area were largely controlled by particle-associated enterococci and
436	mammal fecal source input. The influence of these factors is likely universal across freshwater
437	and estuarine environments, however other ecosystem factors likely play a role as well. For
438	freshwater portions of the coastal watershed, sediment may act as a significant enterococci
439	reservoir that is frequently re-suspended within the water column. Freshwater itself could act as a
440	major conduit for bacterial transport to an estuary and marine beach area where other
441	environmental factors (water temperature and high tide height) can influence enterococci
442	concentrations as well. These findings highlight the dynamic nature of enterococci in natural
443	aquatic ecosystems outside of the mammalian fecal tract, and that concentrations within fresh
444	water and estuary/marine beach water are influenced by a variety of factors.

445

Materials and Methods: 446

447 Site description. This study was conducted in Wells, Maine, USA (Figure 1). Eight different Applied and Environ<u>mental</u>

Microbiology

449

450

451

452

453

454

456

(https://www.wunderground.com/cgibin/findweather/getForecast?query=Wells,%20ME) and characteristics of tides during sampling were obtained from US Harbors Water sampling. Surface water samples were collected weekly from June to September 2016 (n

455

= 1 marine beach) as well as twelve soil, twelve fresh-water sediment and four estuarine

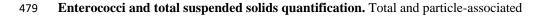
sediment sampling sites. Data for air temperature and rainfall amount for the 48 h prior to

sampling were obtained from Weather Underground

(www.meusharbors.com).

= 117). Sampling started two hours before low tide to maximize the potential impacts of 457 458 freshwater pollution sources, and samples from all estuary and marine beach sites were collected 459 before the slack tide. Water samples were collected in autoclaved 1L Nalgene[™] Wide-Mouth Lab Quality PPCO bottles (Thermo Fisher Scientific, Waltham, MA, USA), and environmental 460 461 parameters were measured with a YSI Pro2030® dissolved oxygen, conductivity, and salinity 462 Instrument (YSI Incorporated, Yellow Springs, Ohio, USA). A field replicate was collected at a 463 different site for each sampling event.

464


Soil, sediment, and marine sediment collection. Environmental sources were collected twice 465 throughout the sampling season to build source libraries that were "finger-printed" with 16S 466 467 sequencing and SourceTracker analysis. Six soil and sediment samples were collected upstream of both freshwater sites (Webhannet and Depot; Figure 1). Soil samples were collected at the 468 469 crest of the stream embankment, where a 10×10 cm a plastic square template was placed down 470 and all soil (O-horizon) within the template at a 2 cm depth was collected. Samples were sieved

Downloaded from http://aem.asm.org/ on July 18, 2018 by guest

AEN

(USA Standard No. 5) to remove any loose-leaf litter and roots to only sample smaller soil
particles and their microbes. Underlying stream sediments were collected using a Van Veen
sediment sampler from depositional sites chosen based on the presence of fine grain sediments.
One grab sample was collected for each site and then the top 2 cm of sediment was subsampled
for analysis. Sediments were sieved (USA Standard No. 45) to remove coarse grain and gravel
size particles. Four estuarine sediments were collected during low tide when intertidal sediments
were exposed using the Van Veen sampler, and the top 2 cm were again collected for analysis.

478

enterococci were enumerated using the EPA Method 1600 membrane filtration protocol (60) and particle-associated enterococci were determined via filtration through a 0.47 mm diameter 3.0 μ m pore size polycarbonate filter (MilliporeTM, Darmstadt, Germany) as first reported by Crump et al. (61). The filters were rolled onto plates containing mEI agar and incubated at 41°C ± 0.5°C; representative colonies were counted in 24 ± 2 hours. Total suspended solids (TSS) were measured using EPA method 160-2, where 500 ml of the water sample was used to determine TSS concentrations (62). Downloaded from http://aem.asm.org/ on July 18, 2018 by guest

487 DNA extractions. DNA extraction from all matrices was performed with the PowerSoils® DNA
488 Extraction Kits (MO BIO Laboratories, Carlsbad, CA, USA), with modifications to the
489 manufacture's protocol needed to optimize the extraction from water sample filters. For water
490 samples, 500 ml collected water sample was filtered through 0.47 mm diameter 0.45 µm pore
491 size polycarbonate filter (Millipore™, Darmstadt, Germany), which was stored in a sterile 2 ml
492 cryotube at -80°C for at least 24 h. Prior to DNA extraction, frozen filters were crushed into
493 small pieces with an ethanol sterilized razor blade, a practice commonly used to maximize DNA

494 recovery (63-65). To minimize additional DNA loss during the extraction process solutions C2 495 and C3 (from manufacturer's protocol) were halved in volume and combined into a single step 496 (as per communication with manufacture). DNA extraction from soil, freshwater sediment, and marine sediment were conducted per the manufacture's protocol. 497

498

Microbial source tracking (MST) PCR and qPCR assays. MST PCR assays that target 499 500 Mammals (Bac32; 65), Humans (HF183; 9), Gulls (Gull2; 66), Dogs (DF475; 10) and 501 Ruminants (CF128; 9) were used to determine the presence of fecal sources in water samples 502 (Table 3). Positive control plasmids were created for each PCR assay from fresh fecal samples that came from each target organism (Human, Gull, Dog, and Cow). The TOPO[™] TA[™] Cloning 503 504 Kit was used (Invitrogen, Carlsbad, CA, USA), with a blue/white screen of E. coli transformants 505 on kanamycin (50 µg/mL) selective TSA plates. Positive E. coli colonies were screened with their respective PCR assay, and PCR positive colonies were then grown in TSB and extracted 506 with the PureLink[®] Quick Plasmid Miniprep Kit (Invitrogen, Carlsbad, CA, USA). PCR assays 507 were run on a T100[™] Thermal Cycler (BioRad, Hercules, CA, USA) with the GoTaq[®] Green 508 509 MasterMix (Promega, Madison, WI, USA). Cycling conditions and amplification protocols for each assay targeted the different source specific markers and followed protocols delineated by 510 511 different studies: Bac32 (67) and HF183 (67), CF128 (68), DF475 (69), and Gull2 (66). 512 Quantitative PCR assays were also run to determine fecal source strength for Mammals (AllBac; 513 70), Humans (HF183; 71), and Birds (GFD; 72), primer and probe sequences can be found in Table 3. All qPCR assays were run on a Mx3000P cycler (Agilent Technologies, Santa Clara, 514 CA, USA), TaqMan assays used the PerfecCTa[®] FastMix[®] II (QuantaBio, Beverly, MA, USA) 515 master mix and the SYBR green assay used the FastSYBR[™] Green Master Mix (Applied 516

517	Biosystems, Foster City, CA, USA). A standard curve ranging from 10^6 - 10^2 copies (Mammal
518	assay) or 10^5 - 10^1 copies (Human & Bird assay) was also run for each experimental run with the
519	limit of quantification (LOQ) being 100 copies (Mammal) or 10 copies (Human & Bird) per
520	PCR. The Ct values, amplification efficiency, slope, and R^2 values for each standard curve were
521	compared to previously run standard curves, to ensure satisfactory performance before being
522	used to calculate copy numbers for that run. Each environmental sample was diluted 1:10 and
523	run in triplicate and the reaction volume (25 μ l) contained a final concentration of 0.2 mg/ml
524	BSA. Amplification/cycling conditions were preformed per published protocols for AllBac (73),
525	HF183 (73), and GFD (16). TaqMan assays were run with an internal amplification control (74)
526	with a down-shift of 1 cycle considered inhibition. Samples spiked with a plasmid containing 10^4
527	copies of GFD amplicon were used as inhibition controls for the SYBR assay, with a recovery of
528	less than 10^4 copies (100%) considered inhibition. For a list of primers, probes, and standard
529	curve performance, see Supplementary Material 1.

530

531 16S library preparation. The V4 region of the 16S rRNA gene, using the 515F-806R primer-532 barcode pairs, was used for amplicon sequencing (75). The Earth Microbiome Project protocol 533 was used for amplification and pooling of samples, with minor modifications (76). The Qubit[®] dsDNA HS assay was used to quantify sample concentrations, and 500 ng of DNA was pooled 534 535 per sample. The pool was then run on a 1.2 % low-melt agarose gel to separate primer-dimers from acceptable product, and bands between 300-350 bps were cut and extracted as described 536 537 above. The final DNA sample was then run on the Agilent Technologies 2200 TapeStation system (Santa Clara, CA, USA) to determine final size, quality, and purity of sample. Each 538

Applied and Environmental Microbiology 539 library was sent to the Hubbard Center for Genome Studies at the University of New Hampshire

540 to be sequenced (2 x 250 bp) on the Illumina HiSeq 2500 (San Diego, CA, USA).

541

542	Quality filtering and Operational Taxonomic Unit (OTU) picking. QIIME 1.9.1 was used to
543	perform all major quality filtering, and OTU picking (77). Forward and reversed reads were
544	quality trimmed (µ P25) and removed of Illumina adapters via Trimmomatic (78). Any reads that
545	were less than 200 bps were discarded, and reads were merged with the QIIME
546	joined_paired_ends.py, using a minimum overlap of 10 bps and a maximum percent difference
547	of 10%. Paired-end data were analyzed using the QIIME open-reference OTU picking strategy
548	with UCLUST for <i>de novo</i> picking and the Greengenes 13_8 database (79) for taxonomic
549	assignment. Alternative OTU picking strategies were also tested to determine best workflow, for
550	performance of difference strategies refer to Supplementary Material 2. Data for all sequenced
551	samples are publicly available through NCBI BioProject
552	(http://www.ncbi.nlm.nih.gov/bioproject/431501).
553	
554	SourceTracker analysis. Samples from 4 source types (fresh water, soil, sediment, and marine
555	sediment) and 4 sink types (fresh water, estuary water, estuary beach water, and marine beach
556	water) were analyzed by the open-source software SourceTracker v1.0 (37). Default parameters
557	were used (rarefaction depth 1000, burn-in 100, restart 10, alpha (0.001) and beta (0.01) dirichlet

Downloaded from http://aem.asm.org/ on July 18, 2018 by guest

558 hyperparameters) in accordance with previously published literature (53, 80). A 'leave one out'

cross validation was performed to assess the general performance of the model and source 559

560 samples were iteratively assigned as sinks to assess how well a known sink would be assigned (i.e. source = soil and sink = soil). The percent assignments from SourceTracker are the result of
the Gibbs Sampler assigning OTUs from an unknown sample to sources in a random and
iterative fashion, and then calculating likelihood of that OTU originating from said source. The
final output can be interpreted as the percent (or likelihood) of OTUs present in an unknown
sample originating from the sources used in the analysis

566

Partial least squares regression model. A partial least squares regression (PLSR) model was 567 568 used to determine the most important and significant variables affecting enterococci 569 concentrations (81). Two models were created, one for the estuary, estuary beach, and marine 570 beach sites, and one for the freshwater sites. Particle-associated enterococci, environment 571 variables (water temperature, air temperature, dissolved oxygen, salinity, height of previous high 572 tide, rainfall in previous 48 h), fecal source strength (mammal, human, and bird), and percent of 573 environmental source (fresh water, soil, sediment, and marine sediment) were used as 574 explanatory variables for the non-freshwater model. The same parameters, except height of previous high tide and percent of freshwater source, were used for the freshwater model. All data 575 576 except the percent assignments from SourceTracker were $\log (x+1)$ transformed before performing the analysis. A KFold cross validation (K=7) with the NIPALS method was used to 577 578 determine optimal factors and variable importance (VIP > 0.8) for each model. Models were then 579 re-run with only explanatory variables that were determined to be significant. To see model 580 validation and diagnostic plots, refer to Supplementary Material 3. Routine statistical analysis and data visualizations. All routine statistical analyses were 581 performed in R v3.4.0, Python 3.6.1, or JMP Pro13, while multivariate analyses were performed 582 with PC-ORD v6. Graphing was performed in IPython notebook with matplotlib, seaborn, 583

Applied and Environmental

Microbiology

pandas, and numpy packages. All pairwise comparisons were done using the Kruskal-Wallis
nonparametric method, with Dunn's nonparametric multiple comparisons run *post hoc* using a
Bonferroni correction.

587

588 ACKNOWLEDGEMENTS

589 We would like to thank Meagan Sims and Keri Kaczor at the Maine Healthy Beaches program

and Sean Smith PhD at the University of Maine for their guidance and help with general

591 knowledge of the Wells, ME area and planning of field sampling. Field work, sample processing,

and molecular work were assisted by Christine Bunyon, Alexandra Bunda, Jackie Lemaire,

593 Audrey Beresnson, and Joseph Sevigny assisted in optimizing bioinformatic workflows. This

594 work was funded by the National Science Foundation New Hampshire EPSCoR IIA-1330641

595 grant.

596

597 **REFERENCES**

598	1.	US Environmental Protection Agency. 2012. Recreational water quality criteria. US
599		Environ Prot Agency 1-69. https://www.epa.gov/wqc/2012-recreational-water-quality-
600		criteria

601 2. Cabelli VJ. 1989. Swimming-associated illness and recreational water quality criteria.
602 Water Sci Technol 2:13–21.

Downloaded from http://aem.asm.org/ on July 18, 2018 by guest

Applied and Environmental Microbiology

603	3.	Cabelli VJ, Dufour AP, McCabe LJ, Levin MA. 1983. A marine recreational water
604		quality criterion consistent with indicator concepts and risk analysis. J Water Pollut
605		Control Fed 55:1306–1314.
606	4.	Dufour AP. 1984. Bacterial indicators of recreational water quality. Can J Public Health
607		75:49–56.
608	5.	Colford JM, Wade TJ, Schiff KC, Wright CC, Griffith JF, Sandhu SK, Burns S, Sobsey
609		M, Lovelace G, Weisberg SB. 2007. Water quality indicators and the risk of illness at
610		beaches with nonpoint sources of fecal contamination. Epidemiology 18:27-35.
611		10.1097/01.ede.0000249425.32990.b9
612	6.	Soller JA, Schoen ME, Bartrand T, Ravenscroft JE, Ashbolt NJ. 2010. Estimated human
613		health risks from exposure to recreational waters impacted by human and non-human
614		sources of faecal contamination. Water Res 44:4674-4691.
615		10.1016/j.watres.2010.06.049.
616	7.	Soller JA, Schoen ME, Varghese A, Ichida AM, Boehm AB, Eftim S, Ashbolt NJ,
617		Ravenscroft JE. 2014. Human health risk implications of multiple sources of faecal
618		indicator bacteria in a recreational waterbody. Water Res 66:254-264.
619		10.1016/j.watres.2014.08.026 0043-1354/
620	8.	World Health Organization. 1999. Health-based monitoring of recreational waters: the
621		feasibility of a new approach (the "Annapolis Protocol"). World Health Organization -
622		Geneva 1:1-50. http://www.who.int/iris/handle/10665/66477.

623	9.	Bernhard AE, Field KG. 2000. A PCR assay to discriminate human and ruminant feces
624		on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA.
625		Appl Environ Microbiol 66:4571-4574. 10.1128/AEM.66.10.4571-4574.2000.
626	10.	Dick LK, Simonich MT, Field KG. 2005. Microplate subtractive hybridization to enrich
627		for Bacteroidales genetic markers for fecal source identification. Appl Environ Microbiol
628		71:3179–3183. 10.1128/AEM.71.6.3179-3183.2005.
629	11.	Schriewer A, Goodwin KD, Sinigalliano CD, Cox AM, Wanless D, Bartkowiak J,
630		Ebentier DL, Hanley KT, Ervin J, Deering LA, Shanks OC, Peed LA, Meijer WG,
631		Griffith JF, SantoDomingo J, Jay JA, Holden PA, Wuertz S. 2013. Performance
632		evaluation of canine-associated Bacteroidales assays in a multi-laboratory comparison
633		study. Water Res 47:6909-6920. 10.1016/j.watres.2013.03.062.
634	12.	Reischer GH, Kavka GG, Kasper DC, Winter C, Mach RL, Farnleitner AH. 2008.
635		Applicability of DNA based quantitative microbial tracking (QMST) evaluated on a large
636		scale in the Danube River and its important tributaries. Large Rivers 18:117-125.
637		10.1127/lr/18/2008/117.
638	13.	Ebentier DL, Hanley KT, Cao Y, Badgley BD, Boehm AB, Ervin JS, Goodwin KD,
639		Gourmelon M, Griffith JF, Holden PA, Kelty CA, Lozach S, McGee C, Peed LA, Raith
640		M, Ryu H, Sadowsky MJ, Scott EA, Domingo JS, Schriewer A, Sinigalliano CD, Shanks
641		OC, Van De Werfhorst LC, Wang D, Wuertz S, Jay JA. 2013. Evaluation of the
642		repeatability and reproducibility of a suite of qPCR-based microbial source tracking
643		methods. Water Res 47:6839-6848. 10.1016/j.watres.2013.01.060.

Downloaded from http://aem.asm.org/ on July 18, 2018 by guest

Applied and Environmental

Microbiology

644

14.

645 16S rRNA gene markers as a complementary tool for detecting fecal pollution in a prairie watershed. Water Res 43:4838-4849. 10.1016/j.watres.2009.06.045. 646 Sinigalliano CD, Ervin JS, Van De Werfhorst LC, Badgley BD, Ballesté E, Bartkowiak J, 647 15. Boehm AB, Byappanahalli M, Goodwin KD, Gourmelon M, Griffith J, Holden PA, Jay J, 648 Layton B, Lee C, Lee J, Meijer WG, Noble R, Raith M, Ryu H, Sadowsky MJ, Schriewer 649 A, Wang D, Wanless D, Whitman R, Wuertz S, Santo Domingo JW. 2013. Multi-650 651 laboratory evaluations of the performance of Catellicoccus marimammalium PCR assays developed to target gull fecal sources. Water Res 47:6883-6896. 652 10.1016/j.watres.2013.02.059. 653 654 16. Ahmed W, Harwood VJ, Nguyen K, Young S, Hamilton K, Toze S. 2016. Utility of 655 Helicobacter spp. associated GFD markers for detecting avian fecal pollution in natural waters of two continents. Water Res 88:613-622. 10.1016/j.watres.2015.10.050. 656 Ahmed W, Goonetilleke A, Powell D, Chauhan K, Gardner T. 2009. Comparison of 657 17. molecular markers to detect fresh sewage in environmental waters. Water Res 43:4908-658 4917. 10.1016/j.watres.2009.09.047. 659 18. Schriewer A, Miller WA, Byrne BA, Miller MA, Oates S, Conrad PA, Hardin D, Yang 660 HH, Chouicha N, Melli A, Jessup D, Dominik C, Wuertz S. 2010. Presence of 661 662 Bacteroidales as a predictor of pathogens in surface waters of the central California coast. 663 Appl Environ Microbiol 76:5802–5814. 10.1128/AEM.00635-10. 664 19. Flood C, Ufnar J, Wang S, Johnson J, Carr M, Ellender R. 2011. Lack of correlation 665 between enterococcal counts and the presence of human specific fecal markers in

Fremaux B, Gritzfeld J, Boa T, Yost CK. 2009. Evaluation of host-specific Bacteroidales

Applied and Environmental Microbiology

AEM

666

667		10.1016/j.watres.2010.09.026.
668	20.	Shibata T, Solo-Gabriele HM, Sinigalliano CD, Gidley ML, Plano LRW, Fleisher JM,
669		Wang JD, Elmir SM, He G, Wright ME, Abdelzaher AM, Ortega C, Wanless D, Garza
670		AC, Kish J, Scott T, Hollenbeck J, Backer LC, Fleming LE. 2010. Evaluation of
671		conventional and alternative monitoring methods for a recreation marine beach with non-
672		point source of fecal contamination. Environ Sci Technol 44:8175-8181.
673		10.1021/es100884w.
674	21.	Santoro AE, Boehm AB. 2007. Frequent occurrence of the human-specific Bacteroides
675		fecal marker at an open coast marine beach: relationship to waves, tides and traditional
676		indicators. Environ Microbiol 9:2038–2049. 10.1111/j.1462-2920.2007.01319.x.
677	22.	Harwood VJ, Staley C, Badgley BD, Borges K, Korajkic A. 2014. Microbial source
678		tracking markers for detection of fecal contamination in environmental waters:
679		Relationships between pathogens and human health outcomes. FEMS Microbiol Rev
680		38:1-40. 10.1111/1574-6976.12031.
681	23.	Byappanahalli MN, Nevers MB, Korajkic A, Staley ZR, Harwood VJ. 2012. Enterococci
682		in the environment. Microbiol Mol Biol Rev 76:685-706. 10.1128/MMBR.00023-12.
683	24.	Anderson KL, Whitlock JE, Valerie J, Harwood VJ. 2005. Persistence and differential
684		survival of fecal indicator bacteria in subtropical waters and sediments. Appl Environ
685		Microbiol 71:3041–3048. 10.1128/AEM.71.6.3041–3048.2005.

Mississippi creek and coastal waters. Water Res 45:872-878.

686	25.	Haller L, Amedegnato E, Poté J, Wildi W. 2009. Influence of freshwater sediment
687		characteristics on persistence of fecal indicator bacteria. Water Air Soil Pollut 203:217-
688		227. 10.1007/s11270-009-0005-0.
689	26.	Badgley BD, Thomas FIM, Harwood VJ. 2010. The effects of submerged aquatic
690		vegetation on the persistence of environmental populations of Enterococcus spp. Environ
691		Microbiol 12:1271–1281. 10.1111/j.1462-2920.2010.02169.x.
692	27.	Jeng HC, Sinclair R, Daniels R, Englande AJ. 2005. Survival of Enterococci facalis in
693		estuarine sediments. Int J Environ Stud 62:283-291. 10.1080/0020723042000275132.
694	28.	Craig DL, Fallowfield HJ, Cromar NJ. 2002. Enumeration of faecal coliforms from
695		recreational coastal sites: evaluation of techniques for the separation of bacteria from
696		sediments. J Appl Microbiol 93:557–565. 10.1046/j.1365-2672.2002.01730.x.
697	29.	Ferguson DM, Moore DF, Getrich MA, Zhowandai MH. 2005. Enumeration and
698		speciation of enterococci found in marine and intertidal sediments and coastal water in
699		southern California. J Appl Microbiol 99:598–608. 10.1111/j.1365-2672.2005.02660.x.
700	30.	Niewolak S. 1998. Total viable count and concentration of enteric bacteria in bottom
701		sediments from the Czarna Hancza River, Northeast Poland. Polish J Environ Stud
702		7:295–306.
703	31.	Jamieson RC, Gordon RJ, Sharples KE, Stratton GW, Madani A. 2002. Movement and
704		persistence of fecal bacteria in agricultural soils and subsurface drainage water: a review.

705 Can Biosyst Eng 44:1-9.

706	32.	Desmarais TR, Solo-Gabriele HM, Carol J, Palmer CJ. 2002. Influence of soil on fecal
707		indicator organisms in a tidally influenced subtropical environment. Appl Environ
708		Microbiol 68:1165–1172. 10.1128/AEM.68.3.1165–1172.2002.
709	33.	Byappanahalli MN, Roll BM, Fujioka RS. 2012. Evidence for occurrence, persistence,
710		and growth potential of Escherichia coli and Enterococci in Hawaii's soil environments.
711		Microbes Environ 27:164–170. 10.1264/jsme2.ME11305.
712	34.	Fujioka R, Sian-Denton C, Borja M, Castro J, Morphew K. 1998. Soil: the environmental
713		source of Escherichia coli and Enterococci in Guam's streams. Environ Toxicol 6:185-
714		195.
715	35.	Jamieson RC, Joy DM, Lee H, Kostaschuk R, Gordon RJ. 2005. Resuspension of
716		sediment-associated Escherichia coli in a natural stream. J Environ Qual 34:581-589.
717		10.2134/jeq2005.0581.
718	36.	Hathaway JM, Hunt WF. 2011. Evaluation of first flush for indicator bacteria and total
719		suspended solids in urban stormwater runoff. Water Air Soil Pollut 217:135–147.
720		10.1007/s11270-010-0574-y.
721	37.	Knights D, Kucyznski J, Charlson, Zaneveld ES, Mozer J, Mozer MC, Collman RG,
722		Bushman FD, Knight R, Kelley ST. 2013. Bayesian community-wide culture-
723		independent microbial source tracking. Nat Methods 8:761–763. 10.1038/NMETH.1650.
724	38.	Kaczor K, Sims M. 2014. Maine healthy beaches 2014 Report to US EPA April 1, 2015.
725		Maine Sea Grant Publications 1-17.
726		http://digitalcommons.library.umaine.edu/seagrant_pub/41/

727	39.	Grant-Whiting K, Dalton C, Dillon F. 2003. Microbial source tracking in two sourthern
728		Maine watersheds - Webhannet River watershed report. Maine Sea Grant Publications 1-
729		11. https://www.seagrant.umaine.edu/extension/microbial-source-tracking
730	40.	Roy S, Gerard B, Smith SM, McGreavy B. 2017. A runoff-based vulnerability analysis to
731		examine and communicate the dynamics of bacteria pollution events in the Gulf of
732		Maine. Maine Sustainability & Water Conference, 2017 {presentation unpublished}.
733		https://umaine.edu/mitchellcenter/2017-conference/h-understanding-managing-land-sea-
734		connections-along-maine-coast/
735	41.	Piscataqua Region Estuaries Partnership. 2017. State of our estuaries report 2018. PREP
736		Publications 1-50. http://scholars.unh.edu/prep/391
737	42.	Characklis GW, Dilts MJ, Simmons OD, Likirdopulos CA, Krometis LAH, Sobsey MD.
738		2005. Microbial partitioning to settleable particles in stormwater. Water Res 39:1773-
739		1782. 10.1016/j.watres.2005.03.004
740	43.	Mote BL, Turner JW, Lipp EK. 2012. Persistence and growth of the fecal indicator
741		bacteria enterococci in detritus and natural estuarine plankton communities. Appl
742		Environ Microbiol 78:2569–2577. 10.1128/AEM.06902-11.
743	44.	Boehm AB, Sassoubre LM. 2014. Enterococci as indicators of environmental fecal
744		contamination. In: enterococci from commensals to lead causes of drug resist infections.
745		Boston: Massachusetts Eye and Ear Infirmary 1–21.

Downloaded from http://aem.asm.org/ on July 18, 2018 by guest

https://www.ncbi.nlm.nih.gov/books/NBK190421/ 746

747	45.	Talke SA, Swart HE De, Schuttelaars HM. 2009. Feedback between residual circulations
748		and sediment distribution in highly turbid estuaries: an analytical model. Cont Shelf Res
749		29:119–135. 10.1016/j.csr.2007.09.002
750	46.	Schinner T, Letzner A, Liedtke S, Castro FD, Eydelnant IA, Tufenkji N. 2010. Transport
751		of selected bacterial pathogens in agricultural soil and quartz sand. Water Res 44:1182-
752		1192. 10.1016/j.watres.2008.11.038.
753	47.	Mayer RE, Vierheilig J, Egle L, Reischer GH, Saracevic E, Mach RL, Kirschner AKT,
754		Zessner M, Sommer R, Farnleitner AH. 2015. Automated sampling procedures supported
755		by high persistence of bacterial fecal indicators and Bacteroidetes genetic microbial
756		source tracking markers in municipal wastewater during short-term Storage at 5°C. Appl
757		Environ Microbiol 81:5134–5143. 10.1128/AEM.00998-15
758	48.	Sowah RA, Habteselassie MY, Radcliffe DE, Bauske E, Risse M. 2017. Isolating the
759		impact of septic systems on fecal pollution in streams of suburban watersheds in Georgia,
760		United States. Water Res 108:330–338. 10.1016/j.watres.2016.11.007
761	49.	Bushon RN, Brady AMG, Christensen ED, Stelzer EA. 2017. Multi-year microbial
762		source tracking study characterizing fecal contamination in an urban watershed. Water
763		Environ Res 89:127-143. 10.2175/106143016X14798353399412
764	50.	Boehm AB, Soller JA, Shanks OC. 2015. Human-associated fecal quantitative
764 765	50.	polymerase chain reaction measurements and simulated risk of gastrointestinal illness in
	50.	

768	51.	Ahmed W, Hamilton KA, Lobos A, Hughes B, Staley C, Sadowsky MJ, Harwood VJ.
769		2018. Quantitative microbial risk assessment of microbial source tracking markers in
770		recreation water contaminated with fresh untreated and secondary treated sewage.
771		Environ Int 117:243-249. 10.1016/j.envint.2018.05.012
772	52.	Wong M, Kumar L, Jenkins TM, Xagoraraki I, Phanikumar MS, Rose JB. 2009.
773		Evaluation of public health risks at recreational beaches in Lake Michigan via detection
774		of enteric viruses and a human-specific bacteriological marker. Water Res 43:1137-1149.
775		10.1016/j.watres.2008.11.051
776	53.	Green HC, Dick LK, Gilpin B, Samadpour M, Field KG. 2012. Genetic markers for rapid
777		PCR-based identification of gull, Canada goose, duck, and chicken fecal contamination in
778		water. Appl Environ Microbiol 78:503-510. 10.1128/AEM.05734-11
779	54.	Staley C, Gould TJ, Wang P, Phillips J, Cotner JB, Sadowsky MJ. 2016. Sediments and
780		soils act as reservoirs for taxonomic and functional bacterial diversity in the upper
781		Mississippi River. Microb Ecol 71:814-824. 10.1007/s00248-016-0729-5
782	55.	Meybeck M, Laroche L, Dürr HH, Syvitski JPM. 2003. Global variability of daily total
783		suspended solids and their fluxes in rivers. Glob Planet Change 39:65–93.
784		10.1016/S0921-8181(03)00018-3
785	56.	Orton PM, Kineke GC. 2001. Comparing calculated and observed vertical suspended-
786		sediment distributions from a Hudson River estuary turbidity maximum. Estuar Coast
787		Shelf Sci 52:401–410. 10.1006/ecss.2000.0747
	769 770 771 772 773 774 775 776 777 778 777 778 779 780 781 780 781 782 783 784 785 784	769 770 771 772 52. 773 774 775 776 53. 777 778 779 54. 780 781 782 55. 783 784 785 56.

Applied and Environmental Microbiology

788	57.	Carrascal LM, Galván I, Gordo O. 2009. Partial least squares regression as an alternative
789		to current regression methods used in ecology. Oikos 118:681-690. 10.1111/j.1600-
790		0706.2008.16881.x
791	58.	Thoe W, Gold M, Griesbach A, Grimmer M, Taggart ML, Boehm AB. 2014. Predicting
792		water quality at Santa Monica Beach: evaluation of five different models for public
793		notification of unsafe swimming conditions. Water Res 67:105-117.
794		10.1016/j.watres.2014.09.001
795	59.	Brooks WR, Fienen MN, Corsi SR. 2013. Partial least squares for efficient models of
,,,,	57.	brooks with Tienen with, Colsi BR. 2013. Turbai least squares for efficient models of
796		fecal indicator bacteria on Great Lakes beaches. J Environ Manage 114:470-475.
797		10.1016/j.jenvman.2012.09.033
798	60.	Messer JW, Dufour AP. 2002. Method 1600: Enterococci in water by membrane
799		filtration using membrane-Enterococcus indoxyl-β-D-glucoside agar (mEI). US Environ
800		Prot Agency 1-42.
801	61.	Crump BC, Baross JA, Simenstad CA. 1998. Dominance of particle-attached bacteria in
802		the Columbia River estuary, USA. Aquat Microb Ecol 14:7–18. 10.3354/ame014007.
803	62.	US Environmental Protection Agency. 1983. Methods for chemical analysis of water and
804		wastes - method 160.2 (gravimetric, dried at 103-105°C). US Environ Prot Agency 59-
805		61.
806	63.	Sauer EP, Vandewalle JL, Bootsma MJ, Mclellan SL. 2011. Detection of the human
807		specific Bacteroides genetic marker provides evidence of widespread sewage
808		contamination of stormwater in the urban environment. Water Res 45:4081–4091.
809		10.1016/j.watres.2011.04.049.

810	64.	Cloutier DD, Alm EW, McLellan SL. 2015. The influence of land-use, nutrients, and
811		geography on microbial communities and fecal indicator abundance at Lake Michigan
812		beaches. Appl Environ Microbiol 81:4904-4913. 10.1128/AEM.00233-15.
813	65.	Newton RJ, Bootsma MJ, Morrison HG, Sogin ML, McLellan SL. 2013. A microbial
814		signature approach to identify fecal pollution in the waters off an urbanized coast of Lake
815		Michigan. Microb Ecol 65:1011-1023. 10.1007/s00248-013-0200-9.
816	66.	Bernhard AE, Field KG. 2000. Identification of nonpoint sources of fecal pollution in
817		coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal
818		anaerobes. Appl Environ Microbiol 66:1587–1594. 10.1128/AEM.66.4.1587-1594.2000.
819	67.	Lu J, Santo Domingo JW, Lamendella R, Edge T, Hill S. 2008. Phylogenetic diversity
820		and molecular detection of bacteria in gull feces. Appl Environ Microbiol 74:3969-3976.
821		10.1128/AEM.00019-08.
822	68.	Harwood VJ, Brownell M, Wang S, Lepo J, Ellender RD, Ajidahun A, Hellein KN,
823		Kennedy E, Ye X, Flood C. 2009. Validation and field testing of library-independent
824		microbial source tracking methods in the Gulf of Mexico. Water Res 43:4812-4819.
825		10.1016/j.watres.2009.06.029.
826	69.	Shanks OC, Nietch C, Simonich M, Younger M, Reynolds D, Field KG. 2006. Basin-
827		wide analysis of the dynamics of fecal contamination and fecal source identification in
828		Tillamook Bay, Oregon. Appl Environ Microbiol 72:5537-5536. 10.1128/AEM.03059-05
829	70.	Jokinen CC, Schreier H, Mauro W, Taboada E, Isaac-Renton JL, Topp E, Edge T,
830		Thomas JE, Gannon VPJ. 2010. The occurrence and sources of Campylobacter spp.,

8	831		Salmonella enterica and Escherichia coli O157:H7 in the Salmon River, British
8	832		Columbia, Canada. J Water Health 8:374–386. 10.2166/wh.2009.076.
8	833	71.	Layton A, McKay L, Williams D, Garrett V, Gentry R, Sayler G. 2006. Development of
8	834		Bacteroides 16S rRNA gene taqman-based real-time PCR assays for estimation of total,
8	835		human, and bovine fecal pollution in water. Appl Environ Microbiol 72:4214–4224.
8	836		10.1128/AEM.01036-05.
8	837	72.	Converse RR, Blackwood AD, Kirs M, Griffith JF, Noble RT. 2009. Rapid QPCR-based
8	838		assay for fecal Bacteroides spp. as a tool for assessing fecal contamination in recreational
8	839		waters. Water Res 43:4828–4837. 10.1016/j.watres.2009.06.036.
8	840	73.	Green HC, Dick LK, Gilpin B, Samadpour M, Field KG. 2012. Genetic markers for rapid
8	841		PCR-based identification of gull, Canada goose, duck, and chicken fecal contamination in
8	842		water. Appl Environ Microbiol 78:503-510. 10.1128/AEM.05734-11
8	843	74.	Haugland RA, Varma M, Sivaganesan M, Kelty C, Peed L, Shanks OC. 2010. Evaluation
8	844		of genetic markers from the 16S rRNA gene V2 region for use in quantitative detection
8	845		of selected Bacteroidales species and human fecal waste by qPCR. Syst Appl Microbiol
8	846		33:348-357. 10.1016/j.syapm.2010.06.001.
8	847	75.	Nordstrom JL, Vickery MCL, Blackstone GM, Murray SL, DePaola A. 2007.
8	848		Development of a multiplex real-time PCR assay with an internal amplification control
8	849		for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters.
8	850		Appl Environ Microbiol 73:5840–5847. 10.1128/AEM.00460-07.
8	851	76.	Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ,
8	852		Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of
			39

Downloaded from http://aem.asm.org/ on July 18, 2018 by guest

Applied and Environ<u>mental</u>

Microbiology

853

10.1073/pnas.1000080107. 854 77. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, 855 856 Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. 2012. Ultrahigh-throughput microbial community analysis on the Illumina HiSeq and MiSeq 857 platforms. ISME J 6:1621-1624. 10.1038/ismej.2012.8. 858 78. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer 859 N, Gonzalez Pena A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, 860 Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, 861 862 Sevinsky JR, Turn KR. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 5:335-336. doi:10.1038/nmeth.f.303. 863 79. Bolger AM, Lohse M, Usadel B. 2014. Genome analysis Trimmomatic : a flexible 864 865 trimmer for Illumina sequence data. Bioinformatics 30:2114-2120. 866 10.1093/bioinformatics/btu170 867 80. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi 868 D, Hu P, Andersen GL. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069-5072. 869 10.1128/AEM.03006-05 870 Henry R, Schang C, Coutts S, Kolotelo P, Prosser T, Crosbie N, Grant T, Cottam D, 871 81. 872 O'Brien P, Deletic A. 2016. Into the deep: Evaluation of SourceTracker for assessment of 873 faecal contamination of coastal waters. Water Res 93:242-253. 10.1016/j.watres.2016.02.029 874 40

sequences per sample. Proc Natl Acad Sci U S A 108:4516-4522.

875 82. Helland IS. 1990. Partial least squares regression and statistical models. Scand Stat

876 Theory Appl 17:97–114. http://www.jstor.org/stable/4616159.

877

878 Tables

Environmental Microbial Community Source (Including Marine Beach Source)

Water Sample Type	Marine Beach	Freshwater	Estuarine Sediment	Sediment	Soil
Estuary Beach	97%	< 0.01%	0.4%	<0.01%	<0.01%
Estuary	94%	2.9%	0.2%	0.02%	< 0.01%
Freshwater	< 0.01%	N/A	< 0.01%	74%	2.6%

Environmental Microbial Community Source (Excluding Marine Beach Source)

Downloaded from http://aem.asm.org/ on July 18, 2018 by guest

Water Sample Type	Marine Beach	Freshwater	Estuarine Sediment	Sediment	Soil
Estuary Beach	N/A	66%	12%	<0.01%	<0.01%
Estuary	N/A	74%	7.6%	0.02%	<0.01%
Marine Beach	N/A	35%	19%	<0.01%	<0.01%
Freshwater	N/A	N/A	0%	74%	2.6%

879

880 Table 1. The relative contribution of different sources to the microbial communities in

881 estuarine and marine water. SourceTracker was run with two different configurations, one

where Marine Beach water was included as a potential source (top) and a second run where

883 Marine Beach water was excluded as a potential source (bottom).

884

885

AEM

3	
D	
5 6	
= ŏ´	
2 - 6	
5 · E	
2 2	
<u>5</u>	
\leq	
<u> </u>	
<u>n</u>	
5	

Freshwa	ter	Estuary, Estuary Beach & Marine Beach					
PLSR	1	PLSR 1		PLSR 2			
X Variable	Loading	X Variable	Loading	X Variable	Loading		
Particle ENT	0.501	Particle ENT	0.456	Particle ENT	0.420		
qPCR Mammal	0.352	qPCR Mammal	0.438	qPCR Mammal	-0.337		
TSS	TSS 0.408 % Sediment 0.336		0.408	% Freshwater	-0.418		
% Sediment			-0.457	% Unknown	0.389		
% Unknown	0.476	Water Temp (C)	0.302	Water Temp (C)	-0.123		
Salinity	Salinity -0.344		0.170	Hightide (ft)	0.456		
		% Estuarine	-0.294	% Estuarine	0.401		
		Sediment		Sediment			
	50 1 1 1		17.001	<u> </u>			
Total Y	60.1%	Total Y	47.2%	Cumulative Y	61.8%		
Variance		Variance		Variance			

886

887 Table 2. Most significant relationships/contributions for all factors to enterococci

concentrations. Shown is the output from a partial least squares regression for a freshwater and

890 0.8), and loadings are derived from re-running models with only variables deemed significant.

891 Model loadings are specific weights on a multivariate regression axis, positive and negative

892 loadings refer to positive or negative relationships to enterococci concentrations. Negative

893 loadings in the model are designated with a – before the number.

894

895

PCR Assay	Source	Taxa	Target (Size)	Primer/Probes 5' -> 3'
Bac32	Mammal	Bacteroides- Provotella	<i>16S rRNA</i> (696bp)	Bac32:AACGCTAGCTACAGGCTT Bac708:CAATCGGAGTTCTTCGTG
HF183	Human	Human Cluster Bacteroides- Provotella	<i>16S rRNA</i> (541bp)	HF183:ATCATGAGTTCACATGTCCG Bac708:CAATCGGAGTTCTTCGTG
CF128	Ruminant	Ruminant Cluster Bacteroides- Provotella	<i>16S rRNA</i> (595bp)	CF128:CCAACYTTCCCGWTACTC Bac708R:CAATCGGAGTTCTTCGTG
DF475	Dog	Dog Cluster Bacteroides- Provotella	<i>16S rRNA</i> (251bp)	DF475:CGCTTGTATGTACCGGTACG Bac708:CAATCGGAGTTCTTCGTG
Gull2	Gulls	Catellicoccus marimammalium	<i>16S rRNA</i> (412bp)	Gull2F:TGCATCGACCTAAAGTTTTGAG Gull2R:GTCAAAGAGCGAGCAGTTACTA
qPCR Assays	Source	Таха	Target (Size)	Primer/Probes 5'->3'
AllBac TaqMan	Mammal	Bacteroides- Provotella	<i>16S rRNA</i> (108bp)	AllBac296f: GAGAGGAAGGTCCCCCAC AllBac412r: CGCTACTTGGCTGGTTCAG AllBac375Bhqr:(FAM) TGAAGGATGAAGGTTCTATGGATTGTAA ACTT (BHQ-1)
HF183 TaqMan	Human	Human Cluster Bacteroides- Provotella	<i>16S rRNA</i> (167bp)	HF183:ATCATGAGTTCACATGTCCG BDFRev:CGTAGGAGTTTGGACCGTGT BFDFAM:(FAM) CTGAGAGGAAGGTCCCCCACATTGGA (BHQ-1)
GFD SYBR	Avian	Unclassified Helicobacter spp.	<i>16S rRNA</i> (123bp)	F:TCGGCTGAGCACTCTAGGG R:GCGTCTCTTTGTACATCCCA

Downloaded from http://aem.asm.org/ on July 18, 2018 by guest

897 Table 3. Primers and probes for MST PCR and qPCR assays.

904 Figure Legends

905	Figure 1: Wells Maine Study Area and Sampling Sites. All water collection sites are marked
906	with a dark grey circle. Sites that correspond to fresh water are indicated with a (1), estuary (2),
907	estuary beach (3), and marine beach (4). Soil and sediment sites are represented with a star and
908	estuarine sediment sites are shown with a triangle. Map created with ArcGIS Online (using the
909	Light Gray Canvas Map; sources: Esri, DeLorme, HERE, MapmyIndia).

910

911 Figure 2: Geometric Mean Concentrations of Total and Particle Associated Enterococci

912 and Average Total Suspended Solids Concentrations at the Eight Study Sites. (A) Total

913 enterococci concentrations are represented with the blue bar, and particle associated enterococci

914 concentrations correspond to the green bar. Error bars are derived from variation from each site

Downloaded from http://aem.asm.org/ on July 18, 2018 by guest

915 across the entire study. (B) Violin plots were used to represent TSS concentrations, and the color

916 corresponds to the type of site including marine beach (red), estuary beach (purple), estuary

917 (green), or fresh water (blue). Horizontal lines go through the median of each violin plot.

918

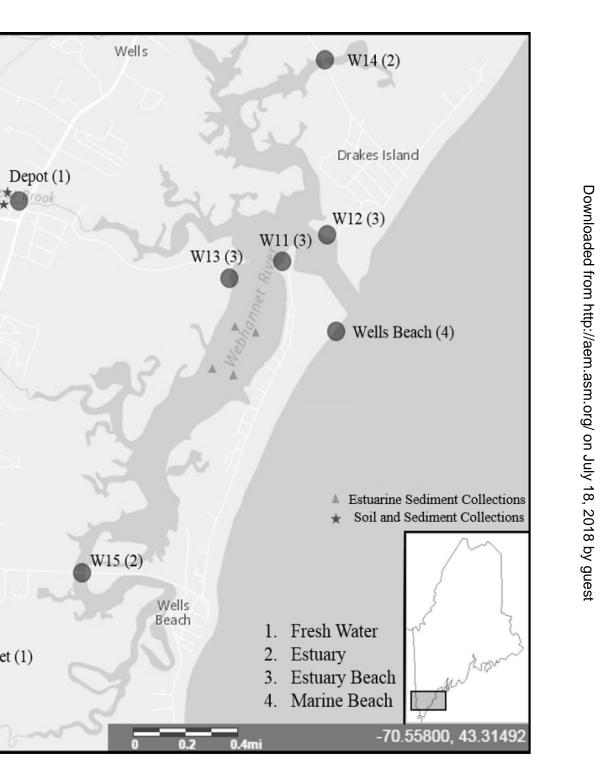
919 Figure 3: Relative Levels of Mammal, Human, and Bird Fecal Source at the Different

920 Types of Study Sites. Box plots represent levels of microbial source tracking markers at marine

921 beach (Wells Beach), estuary beach (W11, W12, W13), estuary (W14 & W15), and fresh water

922 (Webhannet & Depot). Outlier data are represented with a black diamond.

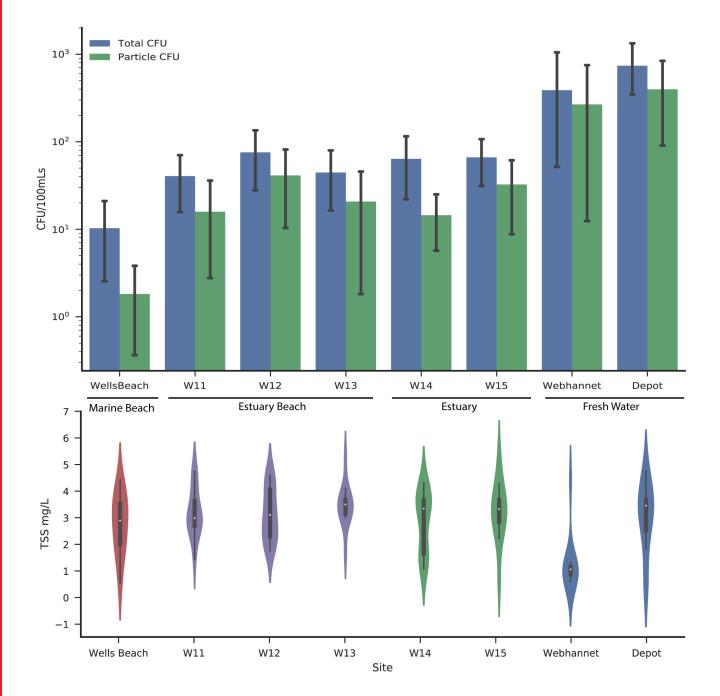
924 Figure 4: 16S Taxa Profiles and the Top Three Most Abundant Bacterial Classes in All 925 Source and Sink Samples. Stacked bar plots represent percentages of the class level composition of the microbial communities. Source corresponds to environmental sources that 926 927 were finger-printed with the SourceTracker program, and then used to determine their presence within water (sink) samples. The table represents the top three classes for each group of samples 928 929 and * corresponds to phylum level. For a complete list of all taxa assignments refer to 930 Supplementary material 4. 931 932 Figure 5. Differences Between Microbial Communities from Different Source Materials.


933 Samples are color-coded based on sample matrix (i.e. soil, fresh water, etc.). Percent of variation 934 explained are displayed on the x and y axis and the minimum stress of the ordination is shown in 935 the top left corner.

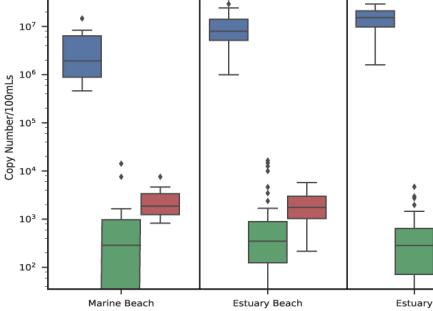
936

Microbioloav

rook


Webhannet (1)

Applied and Environmental Microbiology

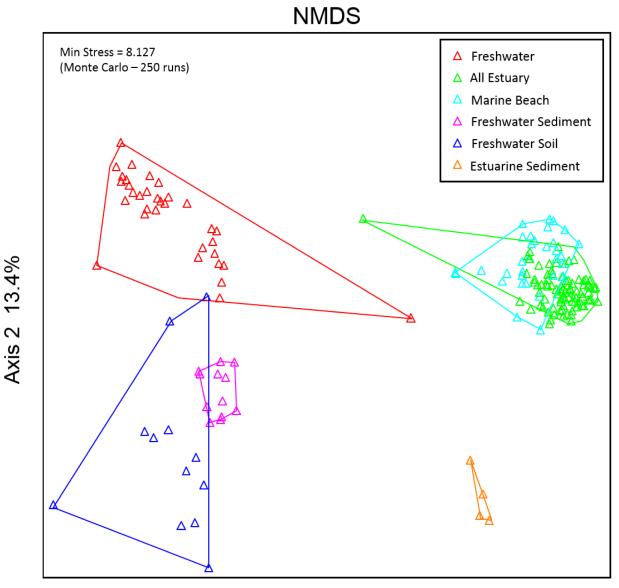

AEM

10⁸

I Marine Beach

Fresh Water

 \Box


Mammal Human Bird

AEM


		Sink	S	ource/Sin	k	Source			
100%—								Top Three Most Abunder Estuary, Estuary Beach, and M Flavobacteriia Alphaproteobacteria Gammaproteobacteria	
								Fresh Water Betaproteobacteria Actinobacteria Flavobacteriia	44% 21% 14%
, 50% —								Marine Sediment Cyanobacteria* Gammaproteobacteria Flavobacteriia	34% 24% 20%
,								Fresh Water Sediment Betaproteobacteria Alphaproteobacteria Saprospirae	37% 13% 6%
0% —								Soil Actinobacteria Alphaproteobacteria Betaproteobacteria * Phylum Level	31% 18% 9%
	Marine Beach	uary Beach	Liennes?	resh Water	Sedinent Fre	Sedinent	20%		

AEM

Percentage of Assigned Taxa Class Level

Downloaded from http://aem.asm.org/ on July 18, 2018 by guest

